Список литературы |
1. Cressman, R. Evolutionary Dynamics and Extensive Form Games (Economic Learning and Social Evolution) / R. Cressman. – MIT Press, 2003 – 327 p.
2. Karev, G. P. Replicator Equations and Models of Biological Populations and Communities / G. P. Karev and I. G. Kareva // Math. Model. Nat. Phenom. – 2014. – Vol. 9, № 3. – P. 68–95.
3. Nowak, M. Evolutionary Dynamics of Biological Games / M. Nowak // Science. – 2004. – Vol. 303, № 5659. – P. 793–799.
4. Eigen, M. Selforganization of matter and the evolution of biological macromolecules / M. Eigen // Naturwissenschaften. – 1971. – Vol. 58, № 10. – P. 465–523.
5. Crow, J. F. An Introduction to Population Genetics Theory / J. F. Crow and M. Kimura. – Cours l'University Oslo Dep. Informatics, 1970. – P. 591.
6. Pagel, M. Human language as a culturally transmitted replicator / M. Pagel // Nat. Rev. Genet. – 2009. – Vol. 10, № 6. – P. 405–415.
7. Nowak, M. Computational and evolutionary aspects of language / M. Nowak, N. L. Komarova and P. Niyogi // Nature. – 2002. – Vol. 417, № 6889. – P. 611–617.
8. Evolutionary dynamics of group interactions on structured populations: a review. / M. Perc, J. Gоmez-Gardenes, A. Szolnoki, L. M. Floria, and Y. Moreno // J. R. Soc. Interface. – 2013. – Vol. 10, № 80. – P. 20120997.
9. Sigmund, K. The Calculus of Selfishness / K. Sigmund. – Princeton University Press, 2010.
10. Nowak, M. Five rules for the evolution of cooperation / M. Nowak // Science. – 2006. – Vol. 314, № 5805. – P. 1560–1563.
11. Марков, А. Эволюция. Классические идеи в свете новых открытий / А. Марков, Е. Наймарк. – М. : ACT, Corpus, 2014. – 656 с.
12. Saakian, D. B. Dynamics of the Eigen and the Crow-Kimura models for molecular evolution / D. B. Saakian, O. Rozanova and A. Akmetzhanov // Phys. Rev. E. – Stat. Nonlinear, Soft Matter Phys. – 2008. – Vol. 78. – P. 1–6.
13. Wilke, C. O. Dynamic fitness landscapes in molecular evolution / C. O. Wilke, C. Ronnewinkel and T. Martinetz – 2001. – Vol. 349, № 5. – P. 395–446.
14. Taylor, P. D. Evolutionarily stable strategies and game dynamics / P. D. Taylor and L. B. Jonker // Mathematical Biosciences. – 1978. – Vol. 40, № 1–2. – P. 145–156.
15. Hofbauer, J. Evolutionary game dynamics / J. Hofbauer and K. Sigmund // Bull. Am. Math. Soc. – 2003. – Vol. 40, № 4. – P. 479–519.
16. Karev, G. P. How to explore replicator equations? / G. P. Karev. – preprint, arxiv:0812.4295, 2008.
17. Komarova, N. L. Replicator-mutator equation, universality property and population dynamics of learning / N. L. Komarova // J. Theor. Biol. – 2004. – Vol. 230, № 2. – P. 227–239.
18. Pais, D. Limit cycles in replicator-mutator network dynamics / D. Pais and N. E. Leonard // Proc. IEEE Conf. Decis. Control, 2011. – P. 3922–3927.
19. Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction / J. a J. Metz, S. a H. Geritz, G. Meszena, F. J. a Jacobs, and J. S. van Heerwaarden // In Stochastic and Spatial Structures of Dynamical Systems. Proceedings of the Royal Dutch Academy of Science, 1996. – P. 183–231.
20. Ernande, B. The evolution of phenotypic plasticity in spatially structured environments: implications of intraspecific competition, plasticity costs and environmental characteristics / B. Ernande and U. Dieckmann // J. Evol. Biol. – 2004. – Vol. 17, № 3. – P. 613–628.
21. Marty, L. Impact of environmental covariation in growth and mortality on evolving maturation reaction norms / L. Marty, U. Dieckmann, M.-J. Rochet, and B. Ernande // Am. Nat. – 2011. – Vol. 177, № 4. – P. E98–E118.
22. Kerr, B. On price's equation and average fitness / B. Kerr and P. Godfrey-Smith // Biol. Philos. – 2002. – Vol. 17, № 4. – P. 551–565.
23. Page, K. M. Unifying evolutionary dynamics / K. M. Page and M. A. Nowak // J. Theor. Biol. – 2002. – Vol. 219, № 1. – P. 93–98.
24. Baake, E. Mutation-selection models solved exactly with methods of statistical mechanics / E. Baake and H. Wagner // Genet. Res. – 2001. – Vol. 78, № 1. – P. 93–117.
25. Saakian, D. B. A new method for the solution of models of biological evolution: Derivation of exact steady-state distributions / D. B. Saakian // J. Stat. Phys. – 2007. – Vol. 128, № 3. – P. 781–798.
26. Gillespie, D. T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions / D. T. Gillespie // J. Comput. Phys. – 1976. – Vol. 22. – P. 403–434.
27. Gillespie, D. T. Stochastic Simulation of Chemical Kinetics / D. T. Gillespie // Annu. Rev. Phys. Chem. – 2007. – Vol. 58, № 1. – P. 35–55.
28. Yakushkina, T. Exact dynamics for a mutator gene model / T. Yakushkina, D. B. Saakian, and C. K. Hu // Chinese J. of Physics. – 2015. – Vol. 53, № 5.
29. Якушкина, Т. С. О распределенной репликаторной системе, соответствующей биматричной игре / Т. С. Якушкина // Вестник Московского университета. Сер. 15: Вычислительная математика и кибернетика. – 2016.
30. Yakushkina, T. Evolutionary Games with Randomly Changing Payoff Matrices / T. Yakushkina, D. B. Saakian, A. Bratus, and C. Hu // Journal of the Physical Society of Japan. – 2015. – Vol. 84, № 6.
31. Hofbauer, J. Evolutionary Games and Population Dynamics / J. Hofbauer and K. Sigmund. – Cambrigde University Press, 1998.
32. Smith, J. M. Evolution and the Theory of Games/J.Maynard Smith.–Cambridge University Press,1982.–224p.
33. Rainwater, G. A new class of split exponential propagation iterative methods of Runge-Kutta type (sEPIRK) for semilinear systems of ODEs / G. Rainwater and M. Tokman // J. Comput. Phys. – 2014. – Vol. 269, P. 40–60.
34. Tokman, M. A new class of exponential propagation iterative methods of Runge-Kutta type (EPIRK) / M. Tokman // J. Comput. Phys. – 2011. – Vol. 230, № 24. – P. 8762–8778.
35. Hochbruck, M. Exponential integrators / M. Hochbruck and A. Ostermann. – 2010. – Vol. 19. – P. 209–286.
36. Loffeld, J. Comparative performance of exponential, implicit, and explicit integrators for stiff systems of ODEs / J. Loffeld and M. Tokman // J. Comput. Appl. Math. – 2013. – Vol. 241, № 1. – P. 45–67,
37. Dieckmann, U. The Geometry of Ecological Interactions / U. Dieckmann, R. Law, and J. A. J. Metz. – Cambridge University Press, 2000.
38. Roca, C. P. Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics / C. P. Roca, J. A. Cuesta, and A. Sánchez // Phys. Life Rev. – 2009. – Vol. 6, № 4. – P. 208–249.
39. Bratus, A. S. A note on the replicator equation with explicit space and global regulation / A. S. Bratus, V. P. Posvyanskii, and A. S. Novozhilov // Math. Biosci. Eng. – 2011. – Vol. 8. – P. 659–676.
40. Michod, R. E. Wave Patterns in Spatial Games and the Evolution of Cooperation / R. E. Michod and R. Ferriére // Evolution. – N. Y., 2000. – P. 318–335.
41. Novozhilov, A. S. On the reaction-diffusion replicator systems: Spatial patterns and asymptotic behaviour / A. S. Novozhilov, V. P. Posvyanskii, and A. S. Bratus // Russ. J. Numer. Anal. Math. Model. – 2012. – Vol. 26, № 1. – P. 555–564.
42. Owolabi, K. M. Higher-order time-stepping methods for time-dependent reactiondiffusion equations arising in biology / K. M. Owolabi and K. C. Patidar // Appl. Math. Comput. – 2014. – Vol. 240. – P. 30–50.
43. Kirby, R. M. To CG or to HDG: A Comparative Study / R. M. Kirby, S. J. Sherwin, and B. Cockburn // J. Sci. Comput. – 2012. – Vol. 51, № 1. – P. 183–212.
44. Cressman, R. Beyond the Symmetric Normal Form: Extensive Form Games, Asymmetric Games and Games with Continuous Strategy Spaces / R. Cressman // Game Dynamics, Proceedings of Symposia in Applied Mathematics. – 2011. – Vol. 69. – P. 27–59.
45. Gaunersdorfer, A. On the dynamics of asymmetric games / A. Gaunersdorfer, J. Hofbauer, and K. Sigmund // Theor. Popul. Biol. – 1991. – Vol. 39, № 3. – P. 345–357.
46. Loeb, L. A. Errors in DNA replication as a basis of malignant changes / L. A. Loeb, C. F. Springgate, and N. Battula // Cancer Res. – 1974. – Vol. 34, № 9. – P. 2311–2321.
47. Loeb, L. A. Multiple mutations and cancer. / L. A. Loeb, K. R. Loeb, and J. P. Anderson // Proc. Natl. Acad. Sci. U. S. A. – 2003. – Vol. 100, № 3. – P. 776–781.
48. Michor, F. What does physics have to do with cancer? / F. Michor, J. Liphardt, M. Ferrari, and J. Widom // Nat. Rev. Cancer. – 2011. – Vol. 11, № 9. – P. 657–670.
49. Nagar, A. Exact phase diagram of a quasispecies model with a mutation rate modifier. / A. Nagar and K. Jain // Phys. Rev. Lett. – 2009. – Vol. 102, № 3. – P. 038101.
50. Huang, W. Fixation probabilities of random mutants under frequency dependent selection / W. Huang and A. Traulsen // J. Theor. Biol. – 2010. – Vol. 263, № 2. – P. 262–268.
51. Tranquilli, P. Rosenbrock–Krylov Methods for Large Systems of Differential Equations / P. Tranquilli and A. Sandu // SIAM J. Sci. Comput. – 2014. – Vol. 36, № 3. – P. A1313–A1338.
52. Burrage, K. A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems / K. Burrage, M. Hegland, S. Macnamara, and R. Sidje // Proc.og The A. A. Markov 150th Anniversary Meeting. – 2006. – P. 21–37.
53. Munsky, B. The finite state projection algorithm for the solution of the chemical master equation / B. Munsky and M. Khammash // J. Chem. Phys. – 2006. – Vol. 124, № 4. – P. 044104.
54. Fox, E. J. Lethal Mutagenesis: Targeting the Mutator Phenotype in Cancer / E. J. Fox and L. A. Loeb // Semin. Cancer Biol. – 2010. – Vol. 20, № 5. – P. 353–359.
55. Sjöberg, P. Fokker-Planck approximation of the master equation in molecular biology / P. Sjöberg, P. Lötstedt, and J. Elf // Comput. Vis. Sci. – 2009. – Vol. 12. – P. 37–50.
56. Chen, G.-Q. Hyperbolic conservation laws with stiff relaxation terms and entropy / G.-Q. Chen, C. D. Levermore, and T.-P. Liu // Commun. Pure Appl. Math. – 1994. – Vol. 47, № 6. – P. 787–830.
57. Dumbser, M. Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws / M. Dumbser, C. Enaux, and E. F. Toro // J. Comput. Phys. – 2008. – Vol. 227, № 8. – P. 3971–4001.
58. Dumbser, M. A unified framework for the construction of One-Step Finite-Volume and discontinuous Galerkin schemes / M. Dumbser, D. Balsara, E. F. Toro, and C. D. Munz // J. Comput. Phys. – 2008. – Vol. 227. – P. 8209–8253.
|